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Abstract This report presents the results of the labora-
tory tests conducted in triaxial and torsional apparatus.
The purposes of this report arc not only to support the
calibration and verification of the bounding surface
hypoplasticity model for granular soil but to provide a
valuable data base for further research in numerical model
simulation and design.

Under this contract, two erperiments were carried out:
(1) lzboratory samples in the triaxial apparatus and hol-
low cylinder torsional apparatus, and (2) centrifuge model
tests including two and three-dimensional structures sub-
jected to static and dynamic loadings.

This report presents the results of triaxial tests includ-
ing drained and undrained, monotonic and cyclic, and
stress and strain controlled tests. The maximum stress ra-
tio achieved in drained triaxial tests was significantly
larger than that in undrained triaxial tests. Results of six
hollow cylinder torsional and rotational shear tests are
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also presented. The results from different types are com-
pared. Finally, the conclusions of these laboratory tests
are also discussed.

The test results indicate that the shape of phase trans-
formation and failure surfaces were different when viewed
in the n-plane. It was also found that sampies subject to
rotational shear may be less likely to develop larger strain
during undrained cycling than samples in triaxial com-
pression/axtension cyclic tests at similar stress ratios.

In the cyclic torsional simple shear test, the maximum
stress ratio is between values obtained from triaxial com-
pression and extension tests. In rotational shear tests, the
stable cycling of effective stress ratios are bounded by the
values of triaxial compression and extension failure stress
ratios. The maximum stress ratio observed in the rota-
tional shear tests for both compression and extension agree
reasonably well with the stress ratio in the undrained
triaxial tests,
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1. INTRODUCTION

In geotechnical engineering practice, laboratory tests play an important role. In the past
30 years, a variety of apparatuses for laboratory shear tests such as triaxial, simple shear and
hollow cylinder torsional shear tests have been developed. In conventional triaxial tests, the
intermediate principal stress is equal to either the major or minor principal stress. A 90° jump in
the major principal stress may occur, but continuous rotation is not possible in a triaxial
apparatus. In most field problems, however, the principal stress directions rotate continuously.
Table 1.1 lists the summary of some earlier studies in the conventional triaxial tests for sand.
Most of the hollow cylinder torsional shear test apparatuses have the capability of rotating the
major principal stress directions with different magnitude of stress ratio. Table 1.2 lists a
summary of some earlier studies of sand behavior in a torsional hollow cylinder apparatus.

In spite of its limited ability to rotate principal stresses, the triaxial test is a relatively
simple and accurate testing method. In the field problems involving soil strength and deformation
behavior, the effects of the magnitude of the stress ratio are more important than those of the
rotation of principal stress directions. Therefore, triaxial tests are extremely useful.

In this study, the results of laboratory testing of granular soil for the calibration and
verification of the bounding surface hypoplasticity model for granular soils (Wang and Dafalias
1990 and Li 1992) are presented. These tests included general tests (e.g. particle size analysis,
maximum and minimum dry density and permeability test), triaxial tests and hollow cylinder
torsional tests. All of the laboratory test results reported were performed at The University of
California in Davis (UCD). Several types of triaxial tests including both drained and undrained,
monotonic and cyclic tests were performed. In the hollow cylinder test samples, both cyclic
torsional and rotational shear tests which involved rotation of principal stress directions were
performed. |

This report is compiled in two parts. The first part is written in five sections including the
introduction (Section 1), triaxial tests (Section 2), hollow cylinder torsional tests (Section 3),
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summary comparisons (Section 4) and conclusions (Section 5). Afterward, summary tables of
test conditions, plots of all laboratory test results and summary plots of comparisons are presented
in sequence in the appendix of this report. Figures and tables presented in the first part are
directly related to the contents of the text.

The background of this research, the material used in the laboratory tests and the
laboratory programs are introduced in Section 1.1, Section 1.2 and Section 1.3, respectively.
Finally, the units and the stress and strain definitions used in this report are described in Section
14.




Table 1.1: List of Some Earlier Studies in Triaxial Tests

Reference Test Program of ion

Bishop & Green (1965) Compression Influence of end restraint

Seed & Lee (1966) Cyclic Liquefaction

Arthur & Menzies (1972) | Compression Inherent anisotropy

Castro (1975) Cyclic Liquefaction and cyclic mobility

Ishihara et al. (1975) Cyclic Undrained deformation and
liquefaction

Townsend (1978) Cyclic Factors affecting triaxial test

Seed (1979) Cyclic Liquefaction

Shankariah & Ramamurthy | Compression / Extension | Anisotropy of sand

(1980)

Hettler & Vardoulakis Compression Behavior of dry sand

(1984)

Vaid & Chern (1985) Cyclic Undrained response of sand

Lam & Tatsuoka (1988) Compression / Extension | Effects of initial anisotropy and
deformation of sand

Gilbert & Marcuson (1988) | Cyclic Density variation in specimen

Riemer et al. (1990) Compression steady state strength

Chu et al. (1992) Compression Strain-softening  behavior in

strain-path test




Table 1.2: List of Some Earlier Studies in Hollow Cylinder Apparatus

Reference Rotation of Principal Subject of Investigation
Stress Direction
Kirkpatrick (1957) No Influence of 6, on failure of sand
Whitman & Luscher (1962) No Strength characteristics of hollow
cylinders of sand
Wu et al (1963) No Failure envelope
Broms & Jamal (1965) No Analysis of triaxial test on sand
Ersig & Bemben (1965) No Failure condition in sand
Barden & Proctor (1971) No Drained strength of granular
material
Jamal (1971) No Shear Strength of sand
Ishibashi & Sherif (1974) Yes Effect of K, on liquefaction
Ishihara & Yasuda (1975) Yes Liquefaction of sand under
irregular cyclic loading
Lade (1975) Yes Influence of stress reorientation on
stress-strain behavior
Ishihara et al. (1980) Yes Effect of principal stress rotation
on liquefaction
Dusseault (1981) No Tunneling and pressuremeter
testing in sand
Muramatsu & Tatsuoka Yes Cyclic undrained stress-strain
(1981) behavior
Saada & Townsend (1981) Yes Strength of soil
Tatsuoka et al. (1982) Yes Cyclic undrained stress-strain
behavior of dense sand
| Hight et al. (1983) Yes Effects of principal stress rotation
Yamada & Ishihara (1983) Yes Undrained deformation of sand
Towhata & Ishihara (1985) Yes Undrained strength of sand
Alarcon et al. (1986) Yes Stress-strain characteristic of sand
Miura et al. (1986) Yes Deformation of anisotropic sand
Saada (1988) Yes Advantage / Limitation of devices
Vaid et al. (1990) Yes Generalized stress-path-dependent
soil behavior
Pradel et al (1990) Yes Yielding and flow of sand
Wijewickreme & Vaid Yes Stress Nonuniformity
(1991)
Gutierrez et al. (1991) Yes Flow theory for sand
Gutierrez &  Ishihara Yes Deformation of sand
(1993) :
‘Yamashita & Toki (1993) Yes Anisotropy of sand

(Note: part of this list is obtained from Hight et al. 1983)
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1.1. Background and Scope

A three year research program entitled "Validation of A Proposed Ratiocnal Material
Characterization for Granular Soil* has been conducted at the University of California, Davis.
The overall objective was to develop and validate the proposed hypoplasticity mode! for sand
(Wang and Dafalias 1990). The objective of the present research focused on developing an
experimental data base as follows:

Conduct a variety of triaxial and hollow cylinder torsional tests. These involved
monotonic and cyclic drained and undrained tests. In the hollow cylinder torsional tests, the
effects of rotation of principal stress direction were also to be investigated.

Parallel studies existed as follows:

(1) Determine the parameters of the hypoplasticity model using the data obtained in
triaxial and hollow cylinder torsional tests report by Chen and Kutter (1993).

(2) Conduct variety of centrifuge model tests involving static and dynamic loading of
saturated and dry sand to obtain data from boundary value problems for comparison with dynamic
finite element analysis. The results of these model studies are described in separste reports
(Wilson and Kutter, 1993).

1.2. Soils Tested

Nevada sand was used to perform the laboratory tests. This sand was the same material
used throughout the VELACS (Verification of Liquefaction Analysis by Centrifuge Studies)
project (Arulanandan and Scott, 1993).

Saturated fine grained Nevada sand was used in all of the reported triaxial and torsional
tests. Attempts were made to also study the behavior of a coarse sand, but difficulty arose due to
effects of membrane penetration, therefore, the results of the tests in coarse sand are not

presented.
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1.3. Testing Program

The laboratory tests in this report are divided into three groups: general tests, triaxial tests
and hollow cylinder torsional tests.
1. General tests:

The general tests included maximum and minimum dry density tests, permeability tests and
particle-size analysis. The maximum and minimum dry densities represent the densest and lonsest
packing of particles without crushing the grains. The standard test methods ASTM D4253-83
and D4254-83 were used to determine the maximum and minimum dry densities, respectively.

Void ratio is the ratio between the volume of voids and the volume of solid particles in a
mass of soil. The amount of void space within a soil has an important effect on its characteristics.
The specific gravity is the ratio between the mass of dry solids and the mass of distilled water
displaced by the dry soil particles. The summary of specific gravity, dry density and void ratio for
Nevada sand is shown in Table 1.2.1.

The permeability of a soil is a measure of its capacity to allow the flow of a fluid through
it. The fluid concerned in this report is water. Permeability depends on a number of factors (i.e.
particle size, shape, void ratio, degree of saturation, type of flow and temperature). It is,
however, an important parameter for analysis of flow of water in boundary value problems. The
permeability of Nevada sand, measured in the vertical direction, is summarized in Table 1.2.2 for
various relative densities

Particle size analysis is used for classification of granular soil's particles into a separate
range. Summaries of sieve analysis and grain size distribution for Nevada sand are shown in
Table 1.2.3 and Figure 1.2.1, respectively.

12




Table 1.2.1 : Summary of Specific Gravity, Dry Density and Void Ratio for Nevada Sand

Gs Yimee(KN/m®)

Yania(KN/m°) Comex

Comin

2.67 17.33

13.87 0.887

0.55

Table 1.2.2 : Summary of Permeability Test Results for Nevada Sand

RELATIVE DENSITY (%) PERMEABILITY (cm/sec)
91.0 2.3*103
60.1 5.6*103
40.2 6.6*103

(Data Source: Earth Technology Co., 1991)

Table 1.2.3 : Summary of Sieve Analysis for Nevada Sand

Sieve # 30 40

60 100 140 200

Percentage | 99.7 98.4
Passing

91.1 404 17.1 54

GRAIN SIZE DISTRIBUTION CURVE

100

PERCENT PASSING BY WEIGHT

10 1 0.1
GRAIN (mm)

0.01

0.001

Figure 1.2.1 : Grain Size Distribution Curve for Nevada Sand
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2. Triaxial tests:

Several types of tests were performed in a computer controlled triaxial apparatus. They
included both undrained and drained, monotonic and cyclic tests. The triaxial test is a standard
test in geotechnical engineering research. It consists of loading a cylindrical sample of soil with
variable lateral pressure and an axial load. A schematic of the triaxial apparatus is shown in
Figure 1.3.1. Table 1.3.1 shows the nomenclature used for designation of the triaxial tests, and
Table 1.3.2 indicates the nomenclature used for computer data files. Diskette copies of the test
data will be made available to interested readers. They can be obtained by contacting the first
author of this report. Schematic stress paths for triaxial tests are illustrated in Figure 1.3.2 to
assist the reader in understanding of the nomenclature.

The procedures of triaxial tests can be related to numerous types of practical problems.
The triaxial apparatus can control the magnitude (not the orientation) of the principal stresses, the
drainage and the measurement of pore water pressure. Test results derived from triaxial tests can
provide valuable information for the understanding of soil behavior as well as soil properties for
use in numerical model simulation and practical design.

3. Hollow cylinder torsional tests:

The torsional shear tests were performed in the UCD hollow cylinder torsional apparatus.
They included torsional shear and rotational shear tests. Figure 1.3.3 shows the schematic of the
hollow cylinder torsional apparatus. The nomenclature used for designation of data files and
torsional tests are shown in Tables 1.3.2 and 1.3.3, respectively.

During the past 30 years, many experimental and analytical procedures have been
developed for evaluating the liquefaction potential of soil deposit. Generally, procedures
developed in early days were formulated on unidirectional basis by simplifying the soil condition
during earthquake shaking. The triaxial test (explained in previous section) is widely used to
characterize soil in the field and to provide the data base for soil constitutive laws. However, it is
known that triaxial testing can not account for multi-directional shear which has been recognized

14




to represent the real field conditions. Rotational shear, a special case of non-proportional loading,
can only take place under multi-directional loading conditions. Rotational shear is defined in this
report as a stress path for which the second invariant of the deviatoric stress tensor, J, is constant
while the directions of the principal stress rotate. Figure 1.3.4 shows different stress paths used
for torsional tests. The hollow cylinder torsional apparatus has the capability of controlling the
three normal stresses (G, ¢, and G,) independently, and in addition, it can apply a shear stress, G,
which the triaxial apparatus can not apply. For tests presented in this report, ¢, and G, were held

equal to each other.

Table 1.3.1 : Nomenclature Used for Designation of Triaxial Tests

NO. | NOMENCLATURE DESCRIPTION

1 | CIUC/E Isotropically-consolidated one cycle undrained
compression and reversed extension triaxial test.

2 | CIUE/C Isotropically-consolidated one cycle undrained
extension and reversed compression triaxial test.

3 |CIUC Isotropically-consolidated monotonic undrained
compression triaxial test.

4 |CIUE Isotropically-consolidated monotonic undrained
extension triaxial test.

5 | CIDC/E (p'=Constant) | Isotropically-consolidated one cycle drained
compression and reversed extension triaxial test.

6 | CIDE/C (p'=Constant) | Isotropically-consolidated one cycle drained
extension and reversed compression triaxial test.

7 | CIDC (p=Constant) Isotropically-consolidated monotonic drained

compression triaxial test.

8 | CIDE (p=Constant) Isotropically-consolidated monotonic drained
extension triaxial test.

9 | CIUCyclic Isotropically-consolidated stress-controlled
undrained cyclic test.

15
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Deviatoric Stress q

Extension
Mean Normal Effective Stress p’

TEST PATH
CIUC/E 00,C,C,C,C,
CIUE/C 00,E,E.E,
CluC 00,GCC,C,
CIUVE OO,E,E,
CIDC/E (p'=Const.) 00,C,E, O,
CIDE/C (p'=Const.) 00, E, G, 0,
CIDC (p'=Const.) 00, C, Cf
CIDE (p'=Const.) 00, E,E,
CiUCylic 00,GEGEGC,EE,G, - o)

Figure 1.3.2 : Typical Stress Paths for Triaxial Tests
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Table 1.3.2 : Nomenclature Used for Designation of Data Files

NOMENCLATURE

DESCRIPTION

N60Uxy

Normally consolidated, undrained, strain controlled, constant p test.
60 : intended relative density

x : effective confining pressure

y : test number

060Uxy

Over consolidated, undrained, strain controlled, constant p test.
60 : intended relative density

x : effective confining pressure

y : test number

N70Dxy

Normally consolidated, drained, strain controlled, constant p' test.
70 : intended relative density

x : effective confining pressure

y : test number

CYxNy

Normally consolidated, undrained, stress controlled, cyclic test.
x : effective confining pressure
y : test number

CYxOy

Over consolidated, undrained, stress controlled, cyclic test.
x : effective confining pressure
y : test number

Hollow cylinder anisotropically consolidated, undrained, stress
controlled, rotational shear test.

X. (Jum)

y : test number

Hollow cylinder anisotropically consolidated, undrained, stress
controlled, cyclic torsional shear test.

x: (oy/0)

y : test number

Table 1.3.3 Nomenclature Used for Designation of Hollow Cylinder Torsional Tests

NO. | NOMENCLATURE DESCRIPTION

1 | HCCAUTSCyclic Hollow cylinder anisotropically consolidated,

undrained, cyclic torsional shear tests.

2 | HCCAURS

Hollow cylinder anisotropically consolidated,
undrained, rotational shear tests
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Figure 1.3.4 : Stress Paths for Hollow Cylinder Torsional Tests
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1.4. Description of Units, Stresses and Strains

1. Units: The SI system of units are used in this report.

2. Stresses and strains:

=355
S, =0, - pd,
8?

p=0,/3

/

J=7
R=J/p

o851
Ju = Y,5,55.
€= Resmen [ R

: second invariant of deviatoric stress tensor
: deviatoric stress tensor

: Kronecker delta

: mean normal stress

: mean nornmal effective stress

: isotropic invariant of deviatoric stress

: stress ratio invariant

Angle in % plane (Lode angle + 30°)

: third invariant of stress tensor

: shape parameter in deviatoric plane

In the above definition, the summation convention for repeated indices is assumed.

For triaxial tests: (0, # 0, = G,)
Y]
A
0, =0,
A
u
A

p'=(0'+20,)/3

p=p+tu

: total vertical stress

: effective vertical stress

: total lateral stresses

: effective lateral stresses
:porewaterpm

: confining pressure

: mean normal effective stress

: mean normal stress
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g=0,-0, : deviatoric stress

£ : axial strain

e =¢ : lateral strains
e, =€ +2¢, : volumetric strain
e, =2Ae, -¢)/3 : deviatoric strain

For all cyclic torsional and rotational shear tests in this report, the internal and external
cavity pressures were equal, thus G;=0, and various stress and strain quantities are defined
below:

O, : torsional shear stress

J=,/.-I:=J(o:)',-0'.)2/34-0;,z : second invariant of stress

p=(c,+20,)/3 : mean normal stress

€. : torsional shear strain

g, =2e, - &)/3 : triaxial deviatoric strain
K=o0,/0, : coefficient of lateral pressure

For frictional materials, the ratio of shear to normal stress is known to be most important
parameter in characterizing the proximity of the stress state to a failure condition. R=J/p'isa
parameter which characterizes the ratio of shear to normal stress in principal stress space. It is
known that the value of R at failure, R, depends on the angle in the x plane, 0. The value of R at
which phase transformation occurs is also a function of 0. This report will use £, p, c and ¢ as
subscripts to indicate failure, phase transformation, compression (8 = 0) and extension (6 = x/6),
respectively.
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2 TRIAXIAL TESTS

This section provides all triaxial test information in this project. Sample preparation is
described in Section 2.1 and test results accomplished from different types of triaxial tests are
presented in Section 2.2 to 2.5. These tests include undrained and drained strain controlled
constant p tests (Section 2.2 and 2.3), undrained stress controlled cyclic tests (Section 2.4) and
isotropic consolidation tests (Section 2.5). In addition, the typical stress paths for different types
of triaxial tests are shown in Figure 1.3.2.

2.1. Sample Preparation

The samples for this study were prepared by pluviation through a 20 inch high Plexigias
cylinder. The sand was fed by hand using a funnel through a #16 sieve at the top of the cylinder.
For most of the tests, the relative density was approximately 70%. In a few tests, the sand was
tested at much lower densities. The diameter and height of sample were about 71 mm and 150
mm, respectively. The top and bottom sides of sand sample were covered by the Plexiglas
pedestals. In order to allow drainage of sample and measurement of pore water pressure, these
Plexiglas pedestals were inlaid with porous stones (diameter = 0.5 inches).
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2.2. Triaxial Undrained Strain Controlied Constant p Tests
(CIUC/E, CIUE/C, CIUC or CIUE)

The results of 26 undrained strain controlled triaxial tests are reported. These results (q
vs. p, q vs. & and p' vs. €,) are shown in Figure 2.2.1 to Figure 2.2.26. These tests were
performed with various combinations of Overconsolidation Ratio (OCR), confining pressure,
compression/extension or back pressure. To check the saturation of the soil specimeas, the pore
pressure coefficient (B value) was measured. The B value is the ratio of the increase in pore
pressure to increase in total stress p during isotropic compression while the sample is undrained.
The increase of pore pressure was recorded while the cell pressure was increased by 50 kPa for all
B value measurements. The summary table for these tests is shown on Table 2.2.1.

Some important observations are:

l.Thestrusratios(R=JE p')atfaihlre(peakstrssraﬁo)andphasetransformaﬁon

were obtained from the average of several test results (Figure 2.2.a and 2.2.b) as listed in
the following:
For undrained compression tests:
phase transformation stress ratio : R,.=0.556
failure stress ratio : R;=0.853
For undrained extension tests:
phase transformation stress ratio : R ,=0.467
failure stress ratio : R,=0.524
The phase transformation is the line corresponding to the transformation from
compression to dilation behavior due to deviatoric loading (see Figure 1.3.2).
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Figure 2.2.a : Summary Plot for Deviatoric Stress Versus Mean Normal Effective

Stress in Triaxial Undrained Tests Under Different Confining Pressure
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Figure 2.2b : Summary Plot for Deviatoric Stress Ratio Versus Mean Normal Effective

Stress in Triaxial Undrained Tests Under Different Confining Pressure
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2. The ratio R /R, =c,=0.84 is different from the ratio at failure Rg/Rg=c=0.61. This is
significant because the hypoplasticity model assumes that c/=c,=c.

3. Reasonable repeatability of results for tests which had similar testing conditions was
obtained. In this report, for OCR=1, the CIUC/E tests at confining pressure = 100 kPa
were repeated three times (Figure 2.2.2, 2.2.3 and 2.2.4), and repeated two times at both
confining pressures = 250 kPa (Figure 2.2.5 and 2.2.6) and 400 kPa. (Figure 2.2.7 and
2.2.8) In addition, the CIUE tests (OCR=1) were repeated three times at confining
pressure = 100 kPa (Figure 2.2.11, 2.2.12 and 2.2.13).

4. In almost every undrained test, the deviatoric stress increased until cavitation occurred.

After cavitation, the deviatoric stress stabilized, but the stress ratio was observed to
increase. In fact, after cavitation occurs the test essentiaily becomes a drained test.

s fi ! I

1. The hypoplasticity model shape parameter ¢ (¢ = R ynuion/Roompression) for failure and
phase transformation are found to be different.

2. In triaxial undrained test, after cavitation the deviatoric stress stabilized but the stress

ratio was observed to increased.
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2.3. Triaxial Drained Strain Controlled Constant p' Tests
(CIDC/E, CIDE/C, CIDC or CIDE)

The results of 10 drained, strain controlled, constant p' triaxial tests are reported. Theee
results (g, vs. €,, q vs. &, and q vs. &,) are shown in Figure 2.3.1 to Figure 2.3.10. To study shear
band phenomena, 3 samples (N70D100A, B and C) were prepared with thin horizontal layers of
dark sand. The thickness of dark sand layer was about 1 mm and the distance between two dark
sand layers was about 25 mm. In addition, to determine the effects of friction in the apparatus on
measurements made by the external load cell, 6 tests (N70D100A, B, C, P Q and R) were
performed with a second load cell inside the triaxial chamber. The summary table for testing
conditions of each test is shown on Table 2.3.1.

Some important observations are:

1. The maximum "failure” stress ratio R, observed in drained tests was significantly larger
than that in undrained tests. The average stress ratios (R=J7; p') on failure line were
1.04 and 0.63 in drained compression and extension tests respectively. The ratio (i.e.
shape factor in deviatoric plane) at failure ¢; (c/=Rg/R;=0.6) in drained tests is closed to
that in the undrained tests. The hypoplasticity mode! assumes that the shape parameter, c,
is a unique value for both undrained and drained test conditions.

2. Most of the drained test results showed a peak followed by a drop of deviatoric stress.
The drop began when the axial strain reached 6 to 8 % depending on the confining
pressure. The drop was sometimes sudden and sometimes gradual, occurring while the
axial strain increased by an additional 0.2 (Figure 2.3.8) to 3% (Figure 2.3.6). The drop in
stress corresponded to a drop in the dilatancy rate and the formation of a shear band.
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3. The samples with colored sand were dissected to observe any shear bands. From tests
interrupted at 3.6% strain, prior to the drop in stress no shear band was apparent. From
tests stopped at 8.5% strain after the drop was complete, it appears that the shear band
was completely developed. A photograph of the colored sand is shown in Figure 2.3.a for
test N70D100A.

4. An example sketch which indicates the offset of the sample after triaxial test
(N70D100A) is presented in Figure 2.3.b. From results of three tests N70D100A, B and
C, the thickness of the shear band appears to be about 10 to 12 times Dy, (mean grain
size). The failure planes were inclined at the angles between 63° and 65°. Figure 2.3.c
shows the example measurements of the vertical offset from the photograph of sample
N70D100A. The offset at the ends of the sample were measured to be 3.7 mm at the top
and 9.15 mm at the bottom of the sample. From Figure 2.3.4, the axial strain at the end of
test, €,, was 8.4%. Once the shear band is formed, it may be assumed that all of the
deformation occurs on the shear band. Therefore, the axial strain corresponding to the
formation of the shear band, ¢,, can be calculated by

g=e,-2

=&

where, A is the offset across the shear band and £, is the initial length of sample. Thus,
the shear band formed at the bottom of the sample at €, = 0.084 - 9.15 / 147.6 = 2.2%,
and the shear band formed at the top of the sample when €, = 0.084 - 3.7/ 147.6 = 5.9%.

5. Based on the test results (Figure 2.3.d) measured from load cells mounted on both
inside and outside of triaxial chamber, a small offset of the initial reading (about -5 kPa in
compression and +5 kPa in extension) was observed. The maximum offset of test results
was less than 2 kPa in compression test (N70D100A, C and R) and reached about 8 kPa in
extension test (N70D100R). This may be the result of friction induced between the
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loading rod and the bearing of the top cap (see figure 1.3.1). The results for compression
suggest that friction is relatively small. For extension, the friction appears to be more
important. However, these results are only preliminary investigations and more data is
needed to verify this.

1. The maximum *failure” stress ratio R, in drained tests was found to be significantly
larger than that in undrained tests.

2. Most of the triaxial drained test results showed a peak followed by a drop of deviatoric
stress. The drop in stress corresponded to a drop in the dilatancy rate and the formation

of a shear band.

3. The thickness of shear band was observed to be about 10 to 12 times mean grain size of
the Nevada sand. The failure planes were inclined at the angles between 63° and 65°.
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Figure 2.3.a : Photograph of the Colored Sand After Triaxial Test N70D100A
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offset was not constant
along height

Figure 2.3.b : Sketch of the Vertical Offset of the Sample After Triaxial Test
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Figure 2.3.c : Measurements of the Vertical Offset from Photograph
of the Sample (N70D100A)
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TRIAXAIL, DRAINED, STRAIN CONTROLLED, CONSTANT p’ TESTS
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2.4. Triaxial Undrained Stress Controlied Cydlic Tests (CIUCy¢lic)

The results of 35 cyclic undrained stress controlled triaxial tests are reported in Figure
2.4.1 to Figure 2.4.35 (q vs. p', q vs. ¢, and p' vs. €,). These tests were performed with varying
cyclic stress ratio, over-consolidation ratio, confining pressure and testing frequency. For most of
the tests, the testing period were 300 sec. The summary table for these tests is Table 2.4.1.

Some important cbservations are:

1. The number of cycles to cause 3% strain for different stress ratios was observed and is
discussed later in connection with Figure 4.1. The liquefaction of dense sand is normally
considered to develop when the pore water pressure ratio builds up to a value of 100%
and the strains of the order of about 5% (Seed and Idriss, 1982). In this report, however,
3% strain is adopted due to the useful comparisons to hollow cylinder torsional shear tests
for which the strains only reach around 3%.

2. The observed slopes of phase transformation lines and failure lines agreed reasonably
well with those measured in undrained monotonic tests.

3. Some test results show mean normal effective stress slightly less than zero. This is the
result of an incorrect zero offset in the pressure transducers.




2.5, Triaxial Consolidation Tests

Results of 8 isotropic consolidation tests are reported in Figure 2.5.1 toFiﬁnZ.S.&
Table 2.5.1 summarized the test data.

Some important observations are:

1. The compression index A and rebound index x for critical state soil mechanics
(Schofield and Wroth 1968) were obtained and are presented in Table 2.5.2. Here,
A= Ae/Atn(p) for virgin compression and x=Ae/Aln(p’) for rebound. A and x were
not found to be constant. Constant A and x values may apply to a limited range of
confining pressures. In any constitutive modeling efforts, these parameters must be
experimentally determined over the pressure range of interest.

2. The hypoplasticity model (Wang and Dafalias 1990) assumes that compression index A"
and rebound index x* are constants. Here, A" =de/d(p'/p,) for virgin compression and
k' =de/d(p'/p,)* for rebound, in which p, and p' are atmospheric pressure and mean
normal effective pressure respectively. It is interesting to point out that the values of A*
and x* (Table 2.5.2) appear to be somewhat better "constants” than A and x. For example
A varies from 0.0031 to 0.0091, whereas A" only varies from 0.0037 to 0.0071.

1. The compression index A (A = A¢/A¢n(p')) and rebound index x (x = AefAtn(p')) for
critical state soil mechanic were found to be not constant. Constant values of A and x may
apply to a limit range of confining pressure.




2. Hypoplasticity model compreasion index A° (A" = de/a(p'/p,)")ndmmame
(x" =de/ d(p'/p,)*) appear to be better "constants® than A and .




3 HOLLOW CYLINDER TORSIONAL TESTS

Two different types of tests (cyclic torsional shear and rotational shear tests) were
performed in the hollow cylinder apparatus at University of California, Davis.

The cyclic torsional shear test was performed by initially applying the axial loading ¢, on
an isotropically consolidated sample until the desired coefficient of lateral pressure, K (K = 0¢/c,),
was reached. Shear stress, 0,5, was than cyclically applied.

The stress path of a rotational shear test was performed by initially applying the axial
loading ©, on an isotropically consolidated sample untii the desired value of J
(J =T =|(0, -6, [3+0,>) was reached. The sample was then sheared with a constant
value of J. The mean normal stress p was held constant while 0, and (6,-0,) were varied in

such a way that J was constant.

Sample preparation and general observations of hollow cylinder samples are illustrated in
Section 3.1. Cyclic torsional and rotational shear test results are presented in Sections 3.2 and
3.3, respectively.

3.1. Sample Preparation and General Observations

The samples used in the hollow cylinder torsional tests were prepared by pluviation
through a 20 inch high Plexiglas cylinder. The sand was fed by hand using a funnel through a #16
sieve at the top of the cylinder. The inside and outside diameters of samples were about 4 inches
and 6 inches, respectively. The height of samples was about 6 inches. The range of relative
density was 68% to 74%. The sample was covered with top and bottom pedestals and vacuumed
along the inner and outer vertical surfaces by two separate membranes (thickness = 0.012 inches).
The inner membrane was fixed by two Plexiglas ring wedges setting on the top and bottom side of




pedestal individually. The outer membrane was fixed by o-rings. To avoid slippage and transfer
shear stress from pedestals to the sample, an epoxy coated sand was provided to the pedestals. In
addition 12 blades (6 blades on each pedestal) were placed perpendicular to the epoxy coated
sand surfaces. To allow drainage of sample and measurement of pore water pressure, total 6
porous stones (diameter = 0.5 inches) were inlaid on both top and bottom pedestals.

Most of test results showed a slight overshoot in deviatoric stress, (o, - 6,)/+/3, during
the initial axial loading condition before application of torsional shear stress. This is the result of
friction induced between loading rod and bearing of top cap and backlash of controller. In
preliminary tests, significant binding was observed in the piston, resulting in excessive errors in
the measurements of stresses applied to the sample. This problem was resolved by loosening
certain parts of the axial and torsional load measurement system, but introduced some backiash in
the torsional displacement measuring system. Thed_nawas"corrected" to eliminate the observed
backlash. Figures 3.2.2, 3.2.17 and 3.3.2 illustrate how the data was corrected. An internal load
cell has been designed and implemented to eliminate these problems, but the results presented in
this report were all obtained before the internal load cell was implemented.
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3.2, Cyclic Torsional Shear Tests (HCCAUTSCydlic)

This report contains the results of four cyclic torsional shear tests performed in the UCD
hollow cylinder torsional apparatus (Figure 1.3.3). These results are shown in Figures 3.2.1 to
3.2.20. The tests were conducted with the following values for coefficient of lateral pressure: K=
Cg/0, = 0.41, 0.63, 1.0 and 1.38. During a given torsional simple shear test 6, and o, were held
constant while the shear stress 6,5 (56 kPa) was cycled, 6, = 56 kPa. The summary table for
these tests is shown on Table 3.2.1. The relationship between stress ratio (,/J,, /7") and angle ©

in % plane for these four cyclic torsional shear tests will be presented later in Figure 4.2.
Some important observations are:

1. At the same stress ratio, the number of cycles to cause 3% strain for cyclic torsional
shear tests was larger than that in cyclic triaxial tests. Furthermore, the number of cycles
to cause 3% strain consistently increased as K decreased. K is the initial ratio of 6¢/c,.
The relationship between cyclic stress ratio (i.e. (o, —a.)/ (Ji . 0',') for triaxial test and
6,,/0,. for torsional shear test) and the number of cycles to cause 3% strain will be
explained later in Section 4.

2. The mean normal effective stress (shown in Figures 3.2.5 and 3.2.10) exhibited the
phenomenon of stable cycling in stress space between phase transformation and failure
after certain number of cycles in the conditions of K<1. During this cycling, the
magnitude of strains continued to increase. It is interesting to note that the changes in

mean normal effective stress during stable cycles were about 27% and 9% of the cyclic
shear stress, 0,o, for K=0.63 and K=0.41, respectively. For the cyclic simple shear test

(K=1), the mean normal effective stress gradually approached zero at 0,,=0 (i.e. sample




liquefied) after a certain number of cycles (shown in Figure 3.2.15). For the case of K>1
(shown in Figure 3.2.20), stable cycling between phase transformation and failure was also

observed, but cyclic change in effective mean normal stresses during these cycles was
almost equal to the magnitude of shear stress 0., and the mean normal effective stress

was much larger than zero at 0,,=0.

3. During the stable cycling of stresses the shear strains, €4, cycled in the range of $0.25%
and 10.3% for K=0.41 and K=0.63, respectively (shown in Figures 3.2.4 and 3.2.9). The
shear strains €, in cyclic simple shear test (K=1, ie. the major principal stress +45°
relative to the vertical in Figure 3.2.14) were 3% in both directions and gradually
increased as the number of stress cycles increased. It is interesting to point out that as K
approaches one, the initial stress approaches an isotropic state (i.e. the initial deviatoric
stress, 0,-C,, decreases) yet the cyclic shear strains, €4, increase. The shear strzins
increased in the order K=0.41, 0.63, 1.0 and 1.38.

4. For the cyclic simple shear test, the maximum (failure) stress ratio R, = J/p' is 0.737
and phase transformation is observed to occur at R, =J/p'=0.4. The maximum stress
ratio is in between values obtained from undrained triaxial compression (R;=0.853) and
extension (R;=0.524). The stress ratio at phase transformation appears to be less than
that in both triaxial compression (R,.=0.556) and extension (R,,=0.467) tests. A detailed
explanation of model paramcters for the hypoplasticity model will be discussed in the
report "Calibration and Testing of the Proposed Hypoplasticity Model for Sand" (Chen
and Kutter, 1993).

5. The maximum stress ratios, R=,/J,, /p', were about 0.71, and 0.56 for the cases of

K<1 and K>1, respectively.
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1. At the same stress ratio, the number of cycles to cause 3% strain for cyclic torsional
shear tests was larger than that in cyclic triaxial tests. The number of cycles to cause 3%
strain consistently increased as the initial ratio of 6y/c, decreased.

2. The effective stress path exhibited the phenomenon of stable cycling between the phase
transformation and failure stress ratios for the cases of K<1 and K>1 after a number of
cycles. For the cyclic simple shear test (K=1), the mean normal effective stress gradually
approached zero at 0,,=0 (i.e. sample liquefied) after a number of cycles.

3. In the cyclic torsional shear tests, the cyclic shear strain amplitude (g,) seems to

increase as the ratio of 6/0, increases.
4. In the cyclic simple shear test, the maximum stress ratio, R, is between values obtained

from triaxial compression and extension tests, and the stress ratio at phase transformation
was less than that in both triaxial compression and extension tests.
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3.3. Rotational Shear Tests (HCCAURS)

The results of two rotational shear tests are reported as follows.. Test results are
presented in Figures 3.3.1 to 3.3.10. Each stress cycle of the rotational shear tests was
accomplished by continuous rotation of principal stress axes at constant values of J. The
direction of the major principal stress rotated from compression (angle 6=0°) to simple shear (6
=30°), then continuously rotated to extension (6=60°) and finally turned back to compression
through another simple shear condition.

In these figures, the filled square, empty square and plus sign symbols represent the
conditions of compression, extension and simple shear, respectively. These symbols were found
to be useful for mapping and cross referencing from one plot to another. The two tests were
conducted using different values of J (Figures 3.3.1 and 3.3.6). The chosen values of J (56 kPa
and 40 kPa) corresponded to stress ratios that were 33% and 24% of the stress ratio at failure in
triaxial compression tests, respectively. The summary table for these tests is shown on Table
33.1.

Some important observations are:

1. The relationship between cyclic stress ratio, JE/P:, and the number of cycles to
cause 3% strain will be explained in later section and is shown in Figure 4.1. The
inclination of curve in the rotational tests appear to be higher than that in the triaxial tests.
More data is required to define the relationship.

2. For both rotational tests, the stress ratios, (o, -a,)/(\ﬁ . p') and JJ,, /p', stabilized

after reaching a large strain (shown in Figures 3.3.4 and 3.3.9). Although the
phenomenon of stabilization of stress ratio was observed, the mean normal effective stress,
p', continued to change cyclically. Figures 3.3.3 and 3.3.8, show the change of mean
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normal effective stress, p', with the shear strain, €,,. Initially, the mean normal effective
stress gradually decreased resulting in an increase in stress ratio until the "stabilization® of
stress ratio occurred. During the "stable” cycles, p' tended to increase as the direction of
stress moved from compression (6=0°) to simple shear (6=30°), to extension (6=60°) and
p' tended to decrease as direction of loading rotated from extension to simple shear, to
compression. The minimum value of p' occurred at 6=~0° (triaxial compression). The
maximum value of p' occurred at 6=60° (triaxial extension). The value of p' was nearly
constant as 8 reduced from 60° to 30°.

3. The relationship between shear stress, 0,5, and shear strain, €,4, for both rotational shear
tests are shown in Figures 3.3.2 and 3.3.7. For 0 increasing from 0° to 60° and O
decreasing from 60° to 0°, the relationship between G4 and €,4 appears to be symmetrical.
The maximum shear strain (€,9,,,,) Occurs after the peak value of 6,4 when 0, is about
half of the peak G,,. The deviatoric strains 2(g,-€,)/3 were not symmetrical, extension
strains were three or four times greater than compression strains in both tests. The
deviatoric strain consistently returned to near zero when the deviatoric stress, G,-Cg, Was a
maximum (6=0°). Similar to the relationship between 6,4 and €,4, the maximum deviatoric
strains occurred after the maximum deviatoric stress when the magnitude of the deviatoric

stress was about half of its maximum value.

4. Although the shear stress and deviatoric stress ratios stabilized near their phase
transformation and failure surfaces, the magnitude of shear strain, €, and deviatoric

strain, 2(€,-€¢)/3, increased as the numbers of stress cycles increased. The stabilization of
stress ratio is clear in the repeatable loop in the plot of (o, —6,)/(\61)') vs. C,fP'

(Figures 3.3.4 and 3.3.9). The increasing rate of strain is also clear in the spiral shape in
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the plot of 2(e,-eg)3 vs. &, (Figures 3.3.4 and 3.3.9) In test NR4OCUS0 (J =40 kPs),
while the shear strain reached about 3%, a sudden increase of shear strain was observed.

5. The cycling of stress ratios, R=J,, /' ad (0, ~0,)/(V3-p') (Figures 3.3.5 and
3.3.10), from compression (6=0°) to extension (6=60°) through the simple shear state (0
=30°) are shown for tests NR4OCUS50 (/=40 kPa) and NR56CUS0 (J = 50 kPa),
respectively. These results revealed that the stress ratios stabilized after a certain number
- of cycles. The maximum stress ratios, R, are about 0.85 in compression and 0.6 in
extension for both tests. It is interesting to point out that the ratio, R ., o/Runaxcomp 18
equal to 0.7 which is between the value ¢, and ¢, determined from undrained triaxial tests.
In the triaxial tests, the ratio ¢, was 0.84 (c,=R, /R, on phase transformation line) and c,
was 0.61 (c/=Rg/R;, on failure line). The values of Rg, (0.853), Ry, (0.524), R, (0.556)
and R, (0.467) determined from undrained triaxial tests as indicated on Figure 3.3.5 and
3.3.10 for reference, the stable cycling of stress ratio are bounded by the values of Rg and

R,

1. The stress ratios, (o, -o,)/(ﬁ-p‘) and [/, /p', traced a stable loop after reaching a

larger strain. Although the phenomenon of stabilization of stress ratio was observed, the
mean normal effective stress, p', continued to change cyclically. The maximum value of p'
occurred at 0=60° (triaxial extension).

2. Although the shear stress and deviatoric stress ratios stabilized near their phase
transformation and failure surfaces, the magnitude of shear strain and deviatoric strain

increased as the numbers of stress cycles increased.
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3. In rotational shear tests, the relationship between ¢, and e, was found to be
symmetrical but the deviatoric strains, 2(e,~€,)/3 in extension were three or four times
greater than those in compression.

4. In rotational shear tests, the stable cycling of stress ratios are bounded by the values of
triaxial compression and extension failure stress ratios.



Figure 4.1 shows the summary data for cyclic stress ratio versus number of cycles to cause
3% strain in triaxial, torsional and rotational shear tests. It should be noted that
T2 =\(0,=0,) 3+0.7 for rotational shear tests and /T, = (0, —0,) /3 for trimxial tests,
(i.e. 6,4=0 for triaxial tests). For torsional shear tests, o,, was cycled with constant values for
(0, -0,), which depended on the values for coefficient of lateral pressure K (K=6/6,). Thus,

these cyclic stress ratios were calculated by (o;—a,)/(ﬁ-c.'), o,/c. and 7, [p, for

triaxial, torsional and rotational shear tests, respectively. These results indicate that the soil
samples which have similar relative density are more resistant to cyclic loading for the rotational
tests than for symmetric cyclic compression/extension triaxial tests. Note that triaxial tests with
unsymmetrical loading with a larger magnitude of compression than extension never developed
large strains (for example, CY250N1, see Table 2.4.1). At the same stress ratio, the number of
cycles to cause 3% strain in the torsional shear tests was larger than that in the cyclic triaxial tests.
Based on these results, liquefaction potential appears to be overestimated by conventional
symmetrical triaxial cyclic test results. This appears to be inconsistent with observations of
Towhata and Ishihara (1985). Further investigation is required.

The consistent picture which emerges is that the occurrence of triaxial extension states of
stress is damaging. In the torsional shear tests, 6, was cycled while 6,-G was held constant
corresponding to four different initial values of K=6,/c,. For K>1, the initial state is one of
triaxial extension, and for K<1 the initial state is triaxial compression, and for K=1 the initial state
is isotropic. For K=1 the cycling of 6,4 corresponds to simple shear. A summary plot for the
relationship between cyclic strain, &,,, and number of cycles is shown in Figure 4.2. For K=1.38
(extension), 3% strain developed in 4 cycles, for K=1, 3% strain deyeloped in 7 cycles but for
K=0.41, only 0.25% strain and for K=0.63, only 0.3% strain developed when the tests were

terminated after 15 cycles.
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Figure 4.3 shows the relationship between stress ratio, /7, /7', and the angle 0 in x plane
for cyclic torsional shear tests performed with different values of coefficient of lateral pressure K.
For the cyclic simple shear test (K=1) (6,=0,=c, and G,, was cycled) the angle 6 was
approximately constant (6=30°). For K=04/0,<1 (ie. 6,>0,=C, and G, was cycled) the angle 6
was started at 0° and cycled with the cycling of shear stress 6., The maximum stress ratios for
both K=1 and K<1 were about 0.71. For the case of K> 1, the pattern is similar to that for K<I
but the angle 6 was started at 60°, and the maximum stress ratio was observed to be 0.56.

Figure 4.4 shows a summary plot of stress ratio versus angle 0 in the x plane for undrained
and drained triaxial, torsional shear and rotational shear tests. The data points plotted in this
figure represent the failure points in varying conditions of triaxial tests, the maximum point in
torsional shear test with K=1 (cyclic simple shear). The lines in Figure 4.4 show the last cycle of
cyclic torsional and rotational shear tests. This plot might be thought of as a map of the failure
surface. Note that the data points at drained and undrained triaxial tests represent average values
from more than one test. The angles of 0°, 30° and 60° represent the triaxial compression (6>
=C¢ OC=0), simple shear (0,=0,=C,, C,#0) and triaxial extension (0,<0=Cq G,=0) tests,
respectively. The path for rotational shear tests is a loop between 0° and 60°. The torsional
shear tests for the cases of K=Gy/G, >1 begin from 6=0° and the angle 0 increases as |0,
increases. For K<I, the test path starts on 6=60° and @ decreases as the magnitude of O,
increases.

These results (Figure 4.4) show that the maximum stress ratio,/J,, /', in triaxial drained
compression tests is significantly larger than that in undrained compression tests. This finding
also can be concluded from the data plotted in Figure 4.5. In Figure 4.5 the filled square and
empty circle symbols represent the maximum and ultimate stress ratios, g/p", in drained triaxial
tests respectively, and the solid lines represent the undrained triaxial stress paths under different
confining pressures. Note that the error bar for the drained tests represents the scatter in stress
ratios in drained triaxial compression and extension tests. The maximum stress ratio, ¢/p', in
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drained triaxial tests is larger than that in undrained tests in both compression and extension. The
difference in maximum stress ratio for triaxial undrained and drained tests appears to be
decreasing as the mean normal effective stress increases. The larger stress ratios at failure in
drained tests are also apparent in undrained tests after cavitation occurs. The upward hook at the
end of the undrained stress path corresponds to cavitation.

Based on the results plotted in Figure 4.4, the maximum stress ratios in the rotational
shear tests for both compression (6=0°) and extension (6=60°) are also found to agree reasonably
well with the stress ratios in the undrained triaxial tests. It was observed that the maximum stress
ratio in the torsional shear test (K=1) was larger than that in rotational shear tests in simple shear
direction (6=30°).

Several types of laboratory tests involving general tests, triaxial shear tests and hollow
cylinder torsional and rotational shear tests were conducted on samples of Nevada sand using
different facilities and apparatus at the University of California, Davis. Regarding the results
obtained from these tests, the following enumerated observations were made.

1. In triaxial tests, the shape parameter, ¢ (¢ = Rogmicn / Rocmpremion ): fOr phase
transformation (c,) and failure (c) are observed to be different. However, the
hypoplasticity model assumes that c=c~c,, (Figure 2.2.a and 2.2.b).

2. The maximum "failure" stress ratio R; observed in drained triaxial tests was significantly
larger than that in undrained triaxial tests. The difference appears to be decreasing as the
mean normal effective stress increases (Figure 4.4). The larger stress ratios at failure in
drained triaxial tests are also apparent in undrained tests after cavitation occurs (Figure
4.5).

3. By measuring the deformed shape of colored sand layers in some drained triaxial
samples, the thickness of shear bands was observed to be about 10 to 12 times mean grain
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size of the Nevada sand (Figure 2.3.a and 2.3.b) or about 1.7 t0 2.0 mm. The failure
planes were observed to be inclined at angles between 63° and 65°. A drop in deviatoric
stress (strain softening) was observed to occur as the failure plane developed (e.g., Figure
2.3.8).

4. Over a limited range of confining pressure, values for the compression index A° and
rebound index x* in the hypoplasticity model appear to be more closely a constant than
values for A and x for the critical state soil mechanics model (Table 2.5.2). However, the
hypoplasticity model assumes that A° and x* are constants.

5. At the same stress ratio, the number of cycles to cause 3% strain for cyclic torsional
shear tests was larger than for cyclic triaxial tests (Figure 4.1). Also, soil samples tested in
rotational shear appear to be more resistant to cyclic loading than samples subject to
symmetrical cyclic triaxial tests. Thus, the liquefaction potential appears to be
overestimated by conventional symmetrical triaxial cyclic test results. This conclusion
needs to be further verified since it contradicts the well-known observation by Towhata
and Ishihara (1985).

6. For the cyclic simple shear test (K=0/G,=1), the mean normal effective stress gradually
approached zero at 0,=0 (Figure 3.2.15). The effective stress path exhibited the
phenomenon of stable cycling between the phase transformation and failure stress ratios
for the cases of K<1 and K>1 after a number of cycles (Figure 3.2.5, 3.2.10 and 3.2.20).

7. In the cyclic simple shear test, the maximum stress ratio is between values obtained
from triaxial compression and extension tests (Figure 4.4).
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8. In the series of cyclic torsional shear tests, the rate of change of cyclic shear strain
amplitude seems to increase as the ratio of 6/, increases (Figure 4.2).

9. In rotational shear tests, the stress ratios, (0, —0,)/(V3- p') and T, /P, traced o

stable loop after a number of cycles (Figure 3.3.4 and 3.3.9). The stress ratios appeared
to oscillate between the phase transformation and failure surfaces.

10. In rotational shear tests, although the shear stress and deviatoric stress ratios stabilized
near their phase transformation and failure surfaces, the magnitude of shear strain, £, and
deviatoric strain, 2(e,-€,)/3, increased as the numbers of stress cycles increased (Figure
3.3.4and 33.9).

11. In rotational shear tests, 0 increasing from 0° to 60° and 0 decreasing from 60° to 0°,
the relationship between 0,4 and &, appears to be symmetrical but the deviatoric strains
2(e,-€¢)/3 were not symmetrical (Figure 3.3.2 and 3.3.7). The deviatoric strains in

extension were three or four times greater than those in compression.

12. In rotational shear tests, the stable cycling of stress ratios are bounded by the values of
triaxial compression failure stress ratio R and extension failure stress ratio R, (Figure
3.3.5 and 3.3.10).

13. The maximum stress ratio observed in the rotational shear tests for both compression

and extension are found to agree reasonably well with the stress ratios in the undrained
triaxial tests (Figure 4.4).
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5 CONCLUSIONS

The major accomplishment of this research has been the generation of a wide diversity of
laboratory test data. These test data not only can be used to support the calibration and
vesification of the bounding surface hypoplasticity model for granular soil but also provide a
valuable data base for further research in constitutive model studies. Summary comparisons are
that the rotations of principal stress directions have very important effects on the soil deformation

Regarding the results obtained from these tests, soil samples tested in rotational shear
were found to be more resistant to cyclic loading than samples in symmetrical triaxial cyclic tests.
The maximum “failure” stress ratio in drained triaxial tests was significantly larger than that in
undrained triaxial tests. Also, the shape of pbase transformation and failure surfaces were
different when viewed in the x-plane.

In the cyclic simple shear test, the stress ratio on the failure line is between values obtained
from triexial compression and extension tests. In rotational shear tests, although the shear stress
and deviatoric stress ratios stabilized near their phase transformation and failure surfaces, the
magnitude of shear and deviatoric strains still increased as the numbers of stress cycles increased.
Also, the stable cycling of stress ratios are found to be bounded by the values of triaxial
compression and extension failure stress ratios. In addition, The maximum stress ratio observed
in the rotational shear tests for both compression and extension are found to agree reasonably well
with the maximum stress ratio in the undrained triaxial tests.
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Table 2.2.1

Table 2.3.1

Table 2.4.1

Table 2.5.1

Table 2.5.2
Table 3.2.1

Table 3.3.1

SUMMARY TABLES AND SOME RESULTS
ON

TRIAXIAL, TORSIONAL AND ROTATIONAL SHEAR TESTS

: Summary of Triaxial, Undrained, Strain Controlled, Constant p Test Data

for Nevada Sand

: Summary of Triaxial, Drained, Strain Controlled, Constant p' Test Data

for Nevada Sand

: Summary of Triaxial, Undrained, Stress Controlled, Cyclic Test Data

for Nevada Sand

: Summary of Triaxial, Consolidation and Rebound Test Data

for Nevada Sand

: Summary of Compression Index A and Rebound index x for Nevada Sand
: Summary of Hollow Cylinder Undrained, Stress Controlled, Cyclic

Torsional Shear Test Data for Nevada Sand

: Summary of Hollow Cylinder Undrained, Stress Controlled, Rotational

Shear Test Data for Nevada Sand
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TEST RESULTS
ON

TRIAXIAL UNDRAINED, STRAIN CONTROLLED, CONSTANT P TESTS

Figure 2.2.1
Figure 2.2.2
Figure 2.2.3
Figure 2.2.4
Figure 2.2.5
Figure 2.2.6
Figure 2.2.7
Figure 2.2.8
Figure 2.2.9
Figure 2.2.10
Figure 2.2.11
Figure 2.2.12
Figure 2.2.13
Figure 2.2.14
Figure 2.2.15
Figure 2.2.16
Figure 2.2.17
Figurc 2.2.18
Figure 2.2.19
Figure 2.2.20
Figure 2.2.21
Figure 2.2.22
Figure 2.2.23
Figure 2.2.24
Figure 2.2.25
Figure 2.2.26

: Triaxial, Undrained, Strain Controlled, Constant p Test (N50U 1)

: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1001)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U 1002)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1003)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U2501)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U2502)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4001)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4002)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4501)
: Triaxial, Undrained, Strain Controlled, Constant p Test (NS0U?2)

: Triaxial, Undrained, Strain Controlled, Constant p Test (N6OU 1006)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U 1008)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1009)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60LJ2506)
: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4006)
: Triaxial, Undrained, Strain Controlled, Constant p Test (10N400U 1, Dr=18%)
: Triaxial, Undrained, Strain Controlled, Constant p Test (40N250U1, Dr=47%)
: Triaxial, Undrained, Strain Controlled, Constant p Test (O50U)3)

: Triaxial, Undrained, Strain Controlled, Constant p Test (O60U2001)
: Triaxial, Undrained, Strain Controlled, Constant p Test (050U2)

: Triaxial, Undrained, Strain Controlled, Constant p Test (O60U2006)
: Triaxial, Undrained, Strain Controlled, Constant p Test (O50U1)

: Triaxial, Undrained, Strain Controlled, Constant p Test (O60U1001)
: Triaxial, Undrained, Strain Controlled, Constant p Test (O60U 1002)
: Triaxial, Undrained, Strain Controlied, Constant p Test (050U4)

: Triaxial, Undrained, Strain Controlled, Constant p Test (OGOU 1006)
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N50U1: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.1
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- Triaxial, Undrained, Strain Controlied, Constant p Test (N50U1)
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N60U1001: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.2 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1001)
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N60U1002: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.3 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1002)




N60U1003: TRIAXIL UNDRAINED STRAIN CONTROLLED
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N60U2501: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.5 : Triaxial, Undrained, Strain Controlled, Constant p Test (N6OU2501)




N60U2502: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.6

: Triaxial, Undrained, Strain Controlled, Constant p Test (N60U2502)




N60U4001: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.7 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4001)
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N60U4002: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.8 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4002
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N60U4501: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.9 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4501)
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N50U2: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.10 : Triaxial, Undrained, Strain Controlled, Constant p Test (NS0U2)
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N60U1006: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.11 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1006)
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N60U1008: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.12 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1008)
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Figure 2.2.13 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U1009)
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N60U4006: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.15 : Triaxial, Undrained, Strain Controlled, Constant p Test (N60U4006)
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40N250U1: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.17 : Triaxial, Undrained, Strain Controlled, Constant p Test (40N250U1, Dr=47%)
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O50U3: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.18 : Triaxial, Undrained, Strain Controlled, Constant p Test (O50U3)
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Figure 2.2.19 : Triaxial, Undrained, Strain Controlled, Constant p Test (060U2001)
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O50U2: TRIAXIAL UNDRAINED STRAIN CONTROLLED

LJ
100

WALIIEEEIFTESTETY:

(V) SS3ULS OIHOLVIAZQ

MEAN NORMAL EFFECTIVE STRESS (KPA)

y

(vd)) SS3ULS OIHOLVIAZO

LU AL I L L

ARSIEEITETEITEIE

@

AXIAL STRAIN (%)

T T T T T T T @
$§ 3 8 %8 8 &8 8 &8 °
(vd)) SS3HLS IALDIS43 IYWHON NVaW

o

AXIAL STRAIN (%)

Figure 2.2.20 : Triaxial, Undrained, Strain Controlled, Constant p Test (O50U2)
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Figure 2.2.21 : Triaxial, Undrained, Strain Controlled, Constant p Test (O60U2006)
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Figure 2.2.22 : Triaxial, Undrained, Strain Controlled, Constant p Test (O50U1)




0O60U1001: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.23 : Triaxial, Undrained, Strain Controlled, Constant p Test (060U1001)
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060U1002: TRIAXIAL UNDRAINED STRAIN CONTROLLED
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Figure 2.2.24 : Triaxial, Undrained, Strain Controlled, Constant p Test (060U1002)
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Figure 2.2.25 : Triaxial, Undrained, Strain Controlled, Constant p Test (O50U4)
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Figure 2.2.26 : Triaxial, Undrained, Strain Controlled, Constant p Test (060U1006)




TEST RESULTS
ON

TRIAXIAL DRAINED, STRAIN CONTROLLED, CONSTANT P' TESTS

Figure 2.3.1
Figure 2.3.2
Figure 2.3.3
Figure 2.3.4
Figure 2.3.5
Figure 2.3.6
Figure 2.3.7
Figure 2.3.8
Figure 2.3.9
Figure 2.3.10

: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D501)

: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D1001)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D2501)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100A)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100B)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100C)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D1005)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D2505)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100P)
: Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100R)
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Figure 2.3.1 : Triaxial, Drained, Strain Controlled, Constant p' Test (N70D501)




N70D1001: TRIAXIAL DRAINED STRAIN CONTROLLED
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N70D2501: TRIAXIAL DRAINED STRAIN CONTROLLED
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Figure 2.3.3 : Triaxial, Drained, Strain Controlled, Constant p' Test (N70D2501)



N70D100A: TRIAXIAL DRAINED STRAIN CONTROLLED
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Figure 2.3.5 : Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100B)




N70D100C: TRIAXIAL DRAINED STRAIN CONTROLLED
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N70D1005: TRIAXIAL DRAINED STRAIN CONTROLLED
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Figure 2.3.7 : Triaxial, Drained, Strain Controlled, Constant p' Test (N70D1005)
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N70D2505: TRIAXIL DRAINED STRAIN CONTROLLED
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Figure2.3.8 : Triaxial, Drained, Strain Controlled, Constant p' Test (N70D2505)
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Figure 2.3.9 : Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100P)
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Figure 2.3.10 : Triaxial, Drained, Strain Controlled, Constant p' Test (N70D100R)




TRIAXIAL UNDRAINED, STRESS CONTROLLED, CYCLIC TESTS
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Figure 2.4.32

TEST RESULTS
ON

- Triaxial, Undrained, Stress Controlled, Cyclic Test {CY50N1)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N1)

: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N2)

: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N3)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N4)

- ‘Triaxial, Undrained, Stress Controlled, Cyclic Test (CY 100NS)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY 100N6)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N1)

: 'Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N2)

- Triaxial, Undrained, Stress Controlled. Cyclic Test (CY250N3)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N4)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N5)

- ‘I'riaxial, Undrained, Stress Controlled, Cyclic Test (CY250N6)

: Triaxial, Undrained, Stress Controlied, Cyclic Test (CY250N7)

: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N8)

: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N9)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N10)
: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N11)
- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N12)
- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N13)
: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N14)
: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY5001)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10001)

: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100021)
- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100022)
: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY20001X)
: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY200021)
- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10002)

- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10003X)
: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10004)

: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY 100046
- Triaxial, Undrained, Stress Controlled, Cyclic Test (CY 100047




Figure 2.4.33 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY 100048)
Figure 2.4.34 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY 100049)
Figure 2.4.35 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY5002)
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Figure 2.4.1 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CYSON1)
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Figure 2.4.2 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N1)




CY100N2: TRIAXIAL UNDRAINED STRESS CONTROLLED
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CY100N3: TRIAXIAL UNDRAINED STRESS CONTROLLED
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Figure 2.4.4 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N3)
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Figure 2.4.5 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N4)
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Figure 2.4.6 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100N5)
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Figure 2.4.9 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N2)
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Figure 2.4.10 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N3)




CY250N4: TRIAXIAL UNDRAINED STRESS CONTROLLED

rryrrrra LU

8R8JERR2°283338§%R8
(Vebl) SS3ULS DIHOLVIAIQ

trrrrevyrrrrrrora

EREBIRRE°28RSBERE
(vd)) SS3HLS DHOLVIAIQ

-10

AXIAL STRAIN (%)

ST T U Tt T

' EEEEEEEEEERE I ,

- -

(vdd) SS3HLS 3NLOI43 TYWHON NVIW

-]
%

AXIAL STRAIN (%)

: Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N4)

Figure 2.4.11




DEVIATORIC STRESS (KPA) DEVIATORIC STRESS (KPA)

MEAN NORMAL EFFECTIVE STRESS (KPA)

8.882888833888828

CY250NS5: TRIAXIAL UNDRAINED STRESS CONTROLLED

8338888838
i 1.1 Lt 1

1 i

&
1

| U T WS N N (R U SO W N B B

12 S
AXIAL STRAIN (%)
Figure 2.4.12 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250NS)
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Figure 2.4.13 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N6)
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Figure 2.4.14 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N7)
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Figure 2.4.15 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N8)
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Figure 2.4.16 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N9)
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Figure 2.4.17 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N10)
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Figure 2.4.18 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N11)
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Figure 2.4.19 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N12)
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Figure 2.4.20 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N13)
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Figure 2.4.21 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY250N14)
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Figure 2.4.22 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CYS001)
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Figure 2.4.23 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10001)
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Figure 2.4.24 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100021)
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Figure 2.4.25 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100022)
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Figure 2.4.26 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY20001X)
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Figure 2.4.27 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY200021)




8B 8 3

.
-
©

DEVIATORIC STRESS (KPA)
2

DEVIATORIC STRESS (KPA)
3

a
2 8 2 8 & 8% 8 2
TN T T T Y O O I B A

MEAN NORMAL EFFECTIVE STRESS (KPA)
&

CY10002: TRIAXIAL UNDRAINED STRESS CONTROLLED

A

’ /’. ; " s
4 /’/ A / %
/ y(l“/, l U 17A 7 4 / / ‘ / /
/ / ‘// / 7 ")'/' /s b 'I—, y
/i // Y

(i
T /"‘ (/) '(féy;wﬂ?f},';,(g«,},w,“v,/\”.'w(;g
1 (r§52q}e,£'§,<§§5}:}‘g}q"‘,‘?{}@‘;} il z RS
7 5 L OIEMANY YAIBICE DRI QUAROIR L
\:«ﬁt @""‘f/‘l"i"t"i"‘sl@!//ﬂ"’r,QM,\". WS
1 E s e e e
s W 89 9 PR p ——

-0.08 -0.06 0.04 -0.02 0 0.02 0.04 0.06

b

008 .06 ©.04 002 0 002 0.04 7 006

AXIAL STRAIN (%)

Figure 2.4.28 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10002)
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Figure 2.4.29 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10003X)
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Figure 2.4.30 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY10004)
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Figure 2.4.31 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100046
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Figure 2.4.32 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100047
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Figure 2.4.33 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100048)
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Figure 2.4.34 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY100049)
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Figure 2.4.35 : Triaxial, Undrained, Stress Controlled, Cyclic Test (CY5002)
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TEST RESULTS
ON
TRIAXIAL CONSOLIDATION AND REBOUND TESTS

: Triaxial Consolidation Test (CY5002C)

: Triaxial Consolidation Test (CY10003C)
: Triaxial Consolidation Test (CY100C46)
: Triaxial Consolidation Test (CY100C48)
: Triaxial Consolidation Test (CY100C49)
: Triaxial Consolidation Test (O60C1001)
: Triaxial Consolidation Test (060C1002)
: Triaxial Consolidation Test (060C1006)
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Figure 2.52  : Triaxial Consolidation Test (CY10003C)
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Figure 2.5.4 : Triaxial Consolidation Test (CY100C48)
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Figure 2.5.5 : Triaxial Consolidation Test (CY100C49)
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Figure 2.5.6 : Triaxial Consolidation Test (060C1001)
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Figure 2.5.7 : Triaxial Consolidation Test (060C1002)
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Figure 2.5.8 : Triaxial Consolidation Test (060C1006)
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TEST RESULTS
ON
UNDRAINED, STRESS CONTROLLED, TORSIONAL SHEAR TESTS

: Hollow Cylinder Cyclic Torsional Shear Test (NK41CUS50)
: Hollow Cylinder Cyclic Torsional Shear Test (NK41CUS0)
: Hollow Cylinder Cyclic Torsional Shear Test (NK41CU50)
: Hollow Cylinder Cyclic Torsional Shear Test (NK41CUS50)
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Figure 3.2.1 : Hollow Cylinder Cyclic Torsional Shear Test (NK41CUS0)
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Figure 3.2.2 : Hollow Cylinder Cyclic Torsional Shear Test (NK41CU50)
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Figure 3.2.16 : Hollow Cylinder Cyclic Torsional Shear Test (NK138U51)
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TEST RESULTS
ON
UNDRAINED, STRESS CONTROLLED, ROTATIONAL SHEAR TESTS

Figure 3.3.1 : Hollow Cylinder Rotational Shear Test (NR40CU50)
Figure 3.3.2 : Hollow Cylinder Rotational Shear Test (NR40CU50)
Figure 3.3.3 : Hollow Cylinder Rotational Shear Test (NR40CU50)
Figure 3.3.4 : Hollow Cylinder Rotational Shear Test (NR40CU50)
Figure 3.3.5 : Hollow Cylinder Rotational Shear Test (NR40CU50)
Figure 3.3.6 : Hollow Cylinder Rotational Shear Test (NRS6CU50)
Figure 3.3.7 : Hollow Cylinder Rotational Shear Test (NR5S6CU50)
Figure 3.3.8 : Hollow Cylinder Rotational Shear Test (NR56CU50)
Figure 3.3.9 : Hollow Cylinder Rotational Shear Test (NRS6CU50)
Figure 3.3.10 : Hollow Cylinder Rotational Shear Test (NR56CUS50)
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Figure 3.3.1 : Hollow Cylinder Rotational Shear Test (NR40CU50)
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Figure 3.3.2 : Hollow Cylinder Rotational Shear Test (NR40CU50)
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SUMMARY PLOTS
ON
TRIAXIAL, TORSIONAL AND ROTATIONAL SHEAR TESTS
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